Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders
نویسندگان
چکیده
V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA) process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of the planetary ball mill and the type of grinding materials is therefore investigated. These modifications result in different impact energies during ball-powder-wall collisions, which are quantitatively described in this comparative study. Processing with tungsten carbide vials and balls provides slightly improved impact energies compared to vials and balls made of steel. However, contamination of the mechanically alloyed powders with flaked particles of tungsten carbide is unavoidable. In the case of using steel grinding materials, Fe contaminations are also detectable, which are solved in the V and Mo solid solution phases, respectively. Typical mechanisms that occur during the MA process such as fracturing and comminution are analyzed using the comminution rate KP. In both alloys, the welding processes are more pronounced compared to the fracturing processes.
منابع مشابه
ارزیابی مقاومت به اکسایش پیوسته پوشش پاشش حرارتی Mo-Si-B روی فولاد ساده کربنی
In this study, Mo-14Si-10B and Mo-57Si-10B (at%) elemental powders were separately milled using an attritor mill. Mechanically alloyed powders were agglomerated and annealed. Then, powders of Mo-Si-B as alloyed (with composites) and agglomerated (without composites) were plasma sprayed onto plain carbon steels. The samples, both coated and non-coated, were subjected to isothermal oxidation test...
متن کاملEffect of Chromium Content on Formation of (Mo1-x-Crx) Si2 Nanocomposite Powders via Mechanical Alloying
(Mo1-x-Crx)Si2 composite powders were successfully synthesized by ball milling of Mo, Cr and Si elemental powders. Effects of the Cr content, milling time and annealing temperature were investigated. X-ray diffraction (XRD) was used to characterize the milled and annealed powders. The morphological and microstructural evolutions were studied by scanning electron microscopy (SEM) and transmissio...
متن کاملارزیابی ریزساختاری آلیاژ Ni-Nb-Si در حین فرایند آلیاژسازی مکانیکی
In the present study, the mechanical alloying process was used to produce the Ni-Nb-Si amorphous alloy. X-ray diffraction (XRD)analysis and high-resolution transmission electron microscopy (HRTEM) were used to approve the amorphous phase formation after 12 hours of mechanical alloying. The results obtained from the SEM morphological images of powder particles during mechanical alloying showed t...
متن کاملThermodynamic analysis of nanocrystalline solid solution formation in the W-Co-Si ternary system by mechanical alloying
Co3W2Si intermetallic compound was synthesized by mechanical alloying (MA) of W, Co and Si elemental powder mixtures. The phase composition of the milled products was evaluated by X-ray diffraction (XRD) analysis. Morphological evolutions were characterized by transmission electron microscopy (TEM). The results showed that high energy ball milling performed in the present work led to the format...
متن کامل1 Layout
Mechanical alloying of Ti-Si and NiTi was performed by high-energy ball milling at ambient temperature. The structural and compositional evolutions during mechanical alloying were investigated. Results showed that the crystallite size of mechanically alloyed Ti-Si and Ni-Ti powders decreased with increasing milling time and the steady-state crystallite size was approximately 10 nm. The mechanic...
متن کامل